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Abstract-This paper reports the solution to the fundamental problem of how to maximize the mechanical 
power extracted from a hot single-phase stream when the total heat transfer area bathed by the stream is 
constrained. It is shown that the optimization has two degrees of freedom: the shape of the stream 
temperature distribution as a function of the length (x) traveled along the heat transfer surface, and the 
position of this distribution on the absolute temperature scale. The optimal stream temperature distribution 
is exponential in x, and so is the temperature distribution along the hot end of the system that converts the 
heat transfer into mechanical power. At any x, the temperature difference across the heat exchanger is 
proportional to the local absolute temperature. Similar conclusions are reached for the cold end heat 
exchanger, when the power system rejects heat to a cold single-phase stream. It is shown that the optimal 
solution can be implemented in practice by using two counterflow heat exchangers. Each counterflow is 
imbalanced to a degree recommended by thermodynamic optimization. The effect of the sizes and capacity 

rates of the two heat exchangers is documented. 0 1998 Elsevier Science Ltd. All rights reserved. 

1. BACKGROUND 

How to convert heat into work is the question that 
led to heat engines and the industrial revolution. In 
this paper we propose that we take a fresh look at 
this age old question, not from the thermodynamics 
direction, but from the direction of heat transfer. The 
combined application of heat transfer and ther- 
modynamics in the optimization of thermal systems 
has become a self standing and very active field, which 
is reviewed annually (e.g. refs. [l-S]). Why a fresh 
look is timely will become clear after re-examining the 
solved problems shown in Figs. 1-3. 

The key obsemation is that in the thermodynamics 
of power cycles it is routinely assumed that the energy 
input is already available as heat transfer. In almost 
every application, however, the energy input is 
initially carried into the power plant by a stream- 
e.g., a mixture of fuel and oxidant, hot products of 
combustion, exhaust gases, or hot geothermal steam. 
To convert the stream energy into a heat input for the 
cycle executed by the working fluid of the power plant 
is the function of one or more heat exchangers. This 
overlooked interface between the power cycle (pure 
thermodynamics) and the stream requires a heat 
transfer perspective. 

Thermodynamics alone provides an unambiguous 
answer to the question of the maximum power that 
is theoretically available from a stream solely in the 
presence of the atmospheric temperature reservoir 
(T,,) : that answer is the ‘flow exergy’ of the stream 
(e.g. ref. [7], p. 133). It is helpful to review this result 
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Fig. 1. Power plant model with hot stream cooled reversibly 
while in contact with the atmospheric temperature reservoir 

(ref. [6], p. 18). 

while looking at Fig. 1 and assuming that the stream 
is single-phase, for example, an ideal gas or an incom- 
pressible liquid. The hot stream (ti, TH) powers a 
reversible device, and reaches thermal equilibrium 
with the ambient before it is discharged. The pressure 
drop along the stream is assumed negligible. The 
theoretical power output is (e.g. ref. [6], p. 18) : 

I@;;, =tic,To (1) 

The actual power output will always be lower than 
@rev because of the irreversibility of the heat transfer 
between the hot stream and the rest of the power 
plant. A first step in the direction of accounting for 
the heat transfer irreversibility was taken in the model 
of Fig. 2, where the heat transfer surface has the finite 
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NOMENCLATURE 

A heat transfer area 

% specific heat at constant pressure 
C,, C, capacity flow rates 
L flow length 
ri? mass flow rate 

N, NH> N,, N,, numbers of heat transfer 

P 

TC 

TC, 

Th 

Th 

T” 
TL 
T O”t 

TO 

units 
wetted perimeter, or heat transfer 
surface per unit length 
external heat transfer rate 
input heat transfer rate 
rejected heat transfer rate 
entropy generation rate 
hot stream temperature distribution, 
Fig. 4 
cold stream temperature distribution, 
Fig. 10 
temperature of the cold end of the 
reversible compartment, Fig. 10 
hot stream temperature distribution, 
Fig. 10 
temperature of the hot end of the 
reversible compartment, Fig. 10 
the highest temperature 
the lowest temperature 
outlet temperature 
ambient temperature 

1 
overall heat transfer coefficient based 
on A 
power output 
dimensionless power output, equation 

(32) 
dimensionless power output, equation 

(19) 
flow coordinate 
heat exchanger allocation ratio. 

Greek symbols 
E heat exchanger effectiveness 
1 Lagrange multiplier 

p, PHt h functions 
@ integral, equation (11). 

Subscripts 
H high temperature 
L low temperature 
max maximum 
mm maximized twice 

opt optimal 
out outlet 
rev reversible 
S surface, or working fluid at the hot 

end, Fig. 4. 

thermal conductance UA and uniform temperature The spent stream is discharged at the same tempera- 
r,. The hot stream enters the heat exchanger at TH, ture, To,,. The rest of the power plant is modeled as 
and mixes with the rest of the fluid to a uniform reversible. 
temperature (To,,) while it is cooled by the T, surface. It was shown in ref. [7], pp. 381-385, that in Fig. 2 
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Fig. 2. Power plant model with hot stream, well mixed fluid 
in contact with isothermal heat transfer surface (T,), and 

reversible compartment (ref. [7], p. 382). 
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Fig. 3. Power plant driven by an unmixed hot stream in 
contact with an isothermal heat transfer surface (ref. [8], p. 

197). 
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the power output @ has a maximum with respect 
to the temperature of the heat transfer surface. 
This degree of freedom (TJ is available in the 
design of the power producing compartment, for ex- 
ample, by varying the pressure at which the working 
fluid boils while a.bsorbing & = tic,(TH - T,,,) = 
UA(T,,,- T,). When UA is sufficiently large, T, is 
practically equal to To,,. In this case the optimal sur- 
face temperature is Ts,o,, = (THTo)“*, with the cor- 
responding power output 

This power output is, as expected, smaller than in the 
reversible limit [equation (l)]. 

A more recent attempt to make the model of Fig. 1 
more efficient is shown in Fig. 3 (ref. [S], p. 197). This 
figure has the samme features as Fig. 2, except that the 
hot stream remains unmixed as it sweeps the heat 
transfer surface (LA, T,). The heat input to the revers- 
ible compartment is QH = tic,~(T, - TJ where the 
heat exchanger effectiveness is E = 1 - exp( - NJ, and 
N,, = UA/(rizc,). It is not difficult to show that the 
optimal surface temperature is again Ts,o,, = ( TH To)‘j2, 
and that the maximum power output is 

(3) 

In Figs. l-3 and any other model, the hot stream 
becomes colder as it passes through the power plant. 
The heat transfer irreversibility of the power plant is 
due to two sources: (i) the temperature difference 
between the stream (T) and the heat exchanger surface 
(T,), and (ii) the thermal mixing between the dis- 
charged stream (To,,) and the ambient (To). One way 
to decrease both sources is to allow the surface tem- 
perature to vary with (i.e. to follow) the hot stream 
temperature, and to lower the exhaust temperature 
closer to To. 

This result is interesting for two reasons. First, it is These new features are evident in the power plant 
smaller than in equation (2), in apparent con- model defined by the solid line in Fig. 4. Temperature 
tradiction of the fact that in going from Fig. 2 to Fig. is plotted on the vertical. The length traveled by the 
3 we have eliminated one source of irreversibility : the hot stream (L) is proportional to the heat transfer 
thermal mixing experienced by the hot stream in Fig. area, A = pL, where p is the heat transfer area per 
2. The explanation is that equation (2) holds in the unit of flow path length. The power producing com- 
limit N,, >> 1. The second reason is that when the heat partment is a succession of many infinitesimal revers- 
exchanger size (N,,) becomes infinite equation (3) does ible compartments of the kind shown in the center of 
not approach the reversible limit (1) ; instead, equa- the figure. The infinitesimal power output is 

tion (3) approaches equation (2), which means that 
even when UA is infinite the model of Fig. 3 continues 
to generate entropy. 

The three problems reviewed in Figs. l-3 and equa- 
tions (l)-(3) suggest that the question of how to max- 
imize l&’ subject to fixed heat exchanger size (CIA) 
is considerably more interesting. To begin with, we 
should expect an answer (@,,,=.J that approaches the 
true ceiling value (wrCV) as the heat exchanger size 
increases. Such an answer would also have practical 
value, because @‘_, of equation (1) is considerably 
greater than the WA + co limit of the power output 
of the model of Fig. 3, equation (3). The objective of 
the following analysis is to identify in a fundamental 
way the optimal method of power delivery from a hot 
stream, when the heat exchanger inventory is finite. 

2. NONISOTHERMAL HEAT TRANSFER 

SURFACE 

0 x L 
Fig. 4. Power plant model with unmixed hot stream in contact with a nonisothermal heat transfer surface. 
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(4) 

where 

d& = -rirc,dT. (5) 

The heat transfer through the heat exchanger area is 

de,, = [T(x) - T,(x)] Up dx. (6) 

Combining equations (5) and (6) and integrating from 
x = 0 to x = L = A/p while treating U as a constant 
we arrive at a constraint that accounts for the finite- 
ness of the heat exchanger area : 

TH dT UA 
= N,,. (7) 

Similarly, by combining equations (4) and (5) we 
obtain the total power output 

An alternate route to calculating the power output J@ where p is a constant (related to A) that can be deter- 
is to apply the Gouy-Stodola theorem to the larger mined by combining equation (12) with the size con- 
system (extended with dashed line) in Fig. 4 : straint (7) : 

The reversible-limit power output @rev is the same as 
in Fig. 1 and equation (1) and corresponds to the 
reversible cooling of the stream from TH all the way 
down to To. The entropy generation rate s,,, is the 
total amount associated with the larger system (Fig. 
4), and is due to two sources : the temperature differ- 
ence T-T,, and the finite temperature difference 
required by the external cooling rate 
tie = rfq,(Tout- To). Th ese two contributions are rep- 
resented by the two terms in the expression 

(10) 

Note that the first term (the integral) comes from 
each infinitesimal power-producing element, d&” = 
d&/T, -d&/T or d$,, = d&/T, - d&/T, because 
each element operates reversibly, d&/T, = d&T,. 
The second term in equation (10) represents the irre- 
versibility caused by discharging the To,, stream into 
the ambient. 

In summary, equation (9) shows that to maximize 
J@ is equivalent to minimizing &,,., because @rev is 
fixed. The entropy generation expression (10) is sub- 
ject to the size constraint (7). There are two degrees 
of freedom in the minimization of $,,,,, first, the shape 
of the surface temperature function Ts(x), and, 
second, the place of this function on the temperature 
scale (i.e., closer to TH or To). The second degree of 
freedom is alternately represented by the value of the 
exhaust temperature To,,. 

3. OPTIMAL SURFACE TEMPERATURE 
DISTRIBUTION 

First, we assume that T,,, has a specified value, and 
perform the optimization with respect to the shape of 
the function T,(x). When To,, is fixed, the only term 
that is free to vary in the .!&, expression (10) is the 
integral. To minimize this integral subject to the size 
constraint (7) is equivalent to finding the optimal 
function T,,,,, for which the following aggregate inte- 
gral reaches an extremum [9] : 

In this integral, the integrand (named F) is a linear 
combination of the integrands (10) and (7) and II is 
a Lagrange multiplier. The optimal function T,,&T) 
is obtained by solving the Euler equation aF/aT, = 0, 
which yields 

(13) 

Physically, we expect p < 1, which translates into 
To,, < TH for any N,,. 

The important conclusion made possible by equa- 
tion (12) is that, after using equations (5) and (6) 
the optimal surface temperature distribution has an 
exponential-decay shape : 

Ts,optW = 0, ev (- :ln$). (14) 

The corresponding stream temperature variation too 
as an exponential-decay shape, 

T,,,(x) = Tnexp(-:ln$-). (15) 

Equations (14) and (1.5) are illustrated for N,, = 3 in 
Fig. 5. The maximum power output that corresponds 
to Ts,opt is obtained by combining equations (12) and 
(8) : 

Together with the expression for p [equation (13)], 
equation (16) delivers the dimensionless power output 
p,,, = @‘~,,.~,,.&+rc,T~) as a function of the overall 
temperature ratio (T,/T,), the finite size of the heat 
exchanger (N,,), and the exhaust temperature that was 
assumed fixed (T,,,/ To). 
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Fig. 5. The optimal distribution of temperature along the stream and the heat transfer surface in the model 
of Fig. 4. 

4. OPTIMAL EXHAUST TEMPERATURE 

The second step :m the optimization procedure con- 
sists of maximizing the expression (16) with respect to 
T,,,. The optimal exhaust temperature obtained by 
solving d @,,,ax,Fig.4/(P,,ut = 0 is given implicitly by 

=1 

’ (17) 

Combining equations (17) and (13) we learn that 
P = (ToKuut,opt )‘I=. Furthermore, since equation (12) 
also holds at x = j: [namely, T,,o,,(L) = pT,,,,,,,], we 
find that the trailing edge of the heat transfer surface 
must be warmer th.an the ambient, 

Tw,, CL) = ; To. (18) 

The temperature distribution in the heat exchanger 
is now complete (Fig. 5). The surface temperature and 
the stream temperature decrease exponentially. The 
discharged stream carries exergy into the ambient: 
this exergy is destroyed through thermal mixing. Com- 
bining equations 1(16) and (17) we obtain the twice- 
maximized power output IPmm.rig.4. Its dimensionless 
counterpart, 

is a function of only N,, and T,/T,, and is reported in 
Fig. 6. As expected, the twice maximized power output 
increases monotonically with the source temperature 
(TJT,). It can be verified that the second optimization 
step (with respect to To,,) led to an additional increase 
in the power output : this can be done numerically by 
comparing the twice maximized power of Fig. 6 with 
the once maximized power output of equation (16) in 
which we set, for ‘example, 7’,,0,, = To at x = L. 

The maximum power output determined in this sec- 
tion (I@,,,,) meets the criterion noted at the end of 
Section 1 : in the infinite-size limit (N,, + co) p 
approaches 1, Tout,opt approaches To, and @,,, 
approaches I&‘,,, of equation (1). This tendency is illus- 
trated in Fig. 7, which shows the ratio l@_/l@rcV:,,. 
Figure 7 shows that N,, plays a more sensible role 
than T,/T,, and that I@‘,,,,,, approaches mre, within less 
than 10% when N,, exceeds 20. 

Another instructive comparison is presented in Fig. 
8, which shows the ratio between w,,,, and the max- 
imized power output of the scheme of Fig. 3, equation 
(3). Figure 8 shows the considerable gain in power 
output that is associated with the evolution from Fig. 
3 to Fig. 4, i.e. the benefit derived from varying opti- 
mally the temperature (TJ of the hot end of the revers- 
ible power cycle. This method of optimization is par- 
ticularly effective when the heat exchanger is large, for 
example, when N,, b 5. It can be shown analytically 
that in the limit N,, + co and TH/To -+ 1 the ratio 
@nJ wmax,Pig.3 is equal to 2. The overall temperature 
ratio TH/To has a relatively weak effect, especially 
when the N,, value is not large. 

5. COUNTERFLOW HEAT EXCHANGER AT THE 

HOT END 

The optimization with respect to hot-end tem- 
perature distribution (Section 3) shows a way to 
implement the thermodynamic optimum in practice. 
Equation (12) means that at every position along 
the hot stream the temperature difference 
T&x) - Ts,&x) is proportional to the local absolute 
temperature 

J-1. 
p 

(20) 
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1 2 3 4 5 6 7 

TH iTO 
Fig. 6. The twice maximized power output corresponding to the optimal temperature distribution and the 

optimal outlet temperature [equations (14), (15) and (17)]. 

It happens that a proportionality of this type is also a 
feature in an unbalanced counterflow heat exchanger 

arrangement analyzed in Fig. 4, is by running along 

with constant capacity flow rates on both sides (e.g. 
the T, surface a second stream riziz, in counterflow with 
the source stream ri2. The overall thermal conductance 

ref. [7], p. 547). This means that one way to con- 
ceptualize a power plant design that approaches the 

of the counterflow heat exchanger between ri? and i+ziz, 
is UA. 

RllIll - 
W rev 

0 I I I I I I -I 
1 2 3 4 5 6 7 

TH/TO 
Fig. 7. Comparison between the twice maximized power output (Fig. 6) and the reversible power output 

of equation (1). 
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Fig. 8. Comparison between the twice maximized power (Fig. 6) and the maximized power of the model 

of Fig. 3. 

The stream ti, is the working fluid of the reversibly 
operating device :sketched between T, and 7’, in Fig. 
4. The capacity flow rate of this working fluid, (tic,), 
can be found by invoking the first law in every infini- 
tesimal slice dx of the counterflow heat exchanger, 

ri~c, dT = (rizc,), dT,. (21) 

Combining equations (21) and (12) we obtain the 
ratio that describes the required unbalance of the 
counterflow heat exchanger, 

@c,), 1 -=--> 1. 
&CP P 

(22) 

According to Section 4, after the optimization of the 
second degree of freedom, p is a known function of 
N,, and T,/T,,. In conclusion, the optimal capacity 
rate unbalance of the counterflow heat exchanger can 
be selected by using the l/p function plotted in Fig. 9. 
The optimal unbalance is more pronounced when N,, 
is small and T,/i”, is large. 

6. COLD-END AND HOT-END HEAT 

EXCHANGERS 

A step in the direction of making the model of Fig. 
4 more realistic is the model shown in Fig. 10. This 
time we recognizte that the rejected heat too requires 
a heat exchanger of finite size, (UA),. The role of 
heat sink is played by the single-phase cold stream of 
capacity rate C,_ = (tic,),, which enters the power 
plant at the ambient temperature (TL), and exits at 
Tc,o,,. The cold-stream temperature distribution along 

the (UA), heat exchanger is T,(x). The cold-surface 
temperature of the reversible compartment is T&x). 

For the hot-end heat exchanger we retain the model 
introduced in Section 2, except we use the notation 
(UA), for the heat exchanger size, and CH = (ri?c&, 
for the capacity rate of the hot stream. These par- 
ameters are not necessarily equal to the corresponding 
parameters of the cold heat exchanger. The hot stream 
enters at TH (fixed), exits at Th,out, and its temperature 
variation is represented by T,,(x). The temperature of 
the hot surface bathed by the hot stream is Thr(x). We 
use this notation to rewrite the optimal stream and 
surface temperature distributions derived in Section 
2, namely equations (15) and (12) : 

Th(x) = THexp(-:ln%) (23) 

T&) = PH T,wpt (4. (24) 

The (UA), constraint written in place of equation (7) 
yields the relation between pH and the number of heat 
transfer units at the hot end [NH = (U&/C,], namely 

pH=l-+lnH<l. 
H Th,ou, 

(25) 

The irreversibility minimization with respect to sur- 
face temperature (Section 3) can be repeated for the 
cold-end heat exchanger to arrive at conclusions 
equivalent to equations (15) and (12), respectively : 

T,(x) = Tc,out exp (- :lnF) (26) 
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1 2 3 4 5 6 7 

TH/TO 
Fig. 9. The required imbalance of the counterflow heat exchanger used at the hot end of the model of 

Fig. 4. 

wFig. 10 

I 
0 x L 

Fig. 10. Model of a power plant driven by two streams, one hot and the other cold. 
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T‘,(X) = PLTCW 

The (UA), constraint 

(27) 

established the relation between pL and the number of 
heat transfer units at the cold end (NL), 

,uL = I+$-ln%> 1. 
Tl. 

(29) 
L 

This cold-end temperature distribution can be 
implemented by using a counterflow heat exchanger, 
as shown in Section 5. 

The total power output from the model of Fig. 10 
is obtained by combining the integral 

with equations (2311, (24), (26) and (27). The resulting 
expression can be nondimensionalized as 

(31) 

The outlet temperatures of the two streams and the 
power output are related through the first law of ther- 
modynamics for the entire system of Fig. 10, which 
can be expressed as 

I+ TH Th out CL 
-=__A-- 

GT, TL TL G 
(32) 

In view of equations (25), (29), (31) and (32), the 
dimensionless power output fi = w/&T, depends 
on five dimensionless numbers : 

TH T h auf - NH, NL, 2, T. 
TL ’ H I. 

(33) 

The first four are fixed when the streams and the heat 
exchangers are specified. The fifth can be selected by 
maximizing @with respect to Th,JTL. This operation 
was performed by nonlinear programming [IO], and 
the results are illustrated in Fig. 11 for a finite CL/& 
range. The maximized power output ( fi,,,,,) increases 
as the cold flow rate increases. At the same time, the 
two outlet temperatures decrease. 

Another trade off in the maximization of power 
output is present when the total heat exchanger inven- 
tory is constrained (UA),+ (UA), = UA (constant) 
[7]. This constraint can be expressed in terms of NH, 
NL and CL/k, 

NH+NL= N (34) 
H 

where N = UA/C, is the overall number of heat trans- 
fer units. The maximized power output of Fig. 11, 
namely @,_(T,,/TL, NH, NL, CL/C,), can be max- 
imized once more by selecting the heat exchanger allo- 
cation ratio 2 = (UA),/UA subject to fixed N, TH/TL 
and CL/C”. Solving awm,/alz = 0 we obtain 

2-l T c,out,opt / TL 

IQ max 
l- 

Fig. 11. The power output of the model of Fig. 10, maximized with respect to one of the outlet temperatures. 
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0.5 
2 

-- ____ a_- -- 10 = N 
__c-- _c- 

e-4 -- _ ______ 5 
1 

2 3 

cL icH 
Fig. 12. The maximum power output of Fig. 11 maximized once more with respect to the UA allocation 

ratio 2. 

^ %pt = l/2, which means that the heat exchanger inven- 
tory should be divided exactly in half 

VA) nopt = (U&Opt (35) 

regardless of the values of N, TH/TL and CL/&. The 
maximized @,,,, values that correspond to Topt = l/2 
are shown as fi,,,, in Fig. 12. We see that g,,,,,, 
increases monotonically with N, TH/TL and CJC,. 
Note also that as N and T,/T, decrease, p,,,,,, becomes 
practically insensitive to changes in CL/C,. 

7. CONCLUSIONS 

This paper outlined the solution to the fundamental 
problem of how to extract maximum power from a 
hot single-phase stream when the total heat transfer 
surface is fixed. The solution was obtained in two 
optimization steps. In the first, the shape of the stream 
temperature distribution (versus distance) was opti- 
mized. The result was an exponential stream tem- 
perature, and an exponential temperature distribution 
along the hot end of the reversible device that pro- 
duces the power. The second step amounted to opti- 
mizing the positions of these temperature distributions 
on the absolute temperature scale. The double opti- 
mization problem was generalized to the case where 
the power plant (driven by the hot stream) relies on a 
cold single-phase stream for the heat rejection. 

On the more practical side, this paper showed that 
the thermodynamic optimum can be achieved by using 
an appropriately imbalanced counterflow heat 
exchanger between the hot stream and the hot end of 
the cycle executed by the working fluid of the power 
producing device. The same heat exchanger type must 

be used at the cold end if heat is rejected to a single- 
phase cold stream. It must be said that the importance 
of counterflow heat exchangers, and of ‘matching’ the 
temperature of the working fluid to the temperature 
of the source stream is widely recognized in power 
engineering, for example, in Kalina-cycle power plants 
[I I] a and combined-cycle power plants. The com- 
bined heat transfer and thermodynamic analysis con- 
structed in this paper offers a compact and fun- 
damental explanation for why these power 
engineering techniques are important. 
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